From Firm Productivity Dynamics to Aggregate Efficiency

> Bernabe Lopez-Martin Banco de México

ABCDE Conference "Productivity, Growth, and the Law" Mexico City, June 15-16 2015

Disclaimer

The views expressed in this presentation are exclusively those of the author and do not necessarily represent those of Banco de Mexico.

Productivity Growth of Firms over their Life Cycle

TFP largely accounts for cross-country GDP per capita differences.

TFP largely accounts for cross-country GDP per capita differences. (e.g. Caselli, 2005: capital + human capital explains <50% cross country income per capita)

TFP largely accounts for cross-country GDP per capita differences. (e.g. Caselli, 2005: capital + human capital explains <50% cross country income per capita)

Part of these TFP differences have been attributed to:

• Larger dispersion of marginal product of capital and labor across firms in developing economies, *misallocation*.

TFP largely accounts for cross-country GDP per capita differences. (e.g. Caselli, 2005: capital + human capital explains <50% cross country income per capita)

Part of these TFP differences have been attributed to:

- Larger dispersion of marginal product of capital and labor across firms in developing economies, *misallocation*.
 - Evidence found in many countries: Hsieh & Klenow (2009), Busso, Madrigal & Pages (2012).
 - For example: reducing dispersion across manufacturing plants in Mexico to level of US implies a TFP gain of approx. 50%.

TFP largely accounts for cross-country GDP per capita differences. (e.g. Caselli, 2005: capital + human capital explains <50% cross country income per capita)

Part of these TFP differences have been attributed to:

- Larger dispersion of marginal product of capital and labor across firms in developing economies, *misallocation*.
 - Evidence found in many countries: Hsieh & Klenow (2009), Busso, Madrigal & Pages (2012).
 - For example: reducing dispersion across manufacturing plants in Mexico to level of US implies a TFP gain of approx. 50%.
- Lower growth of productivity at the firm level (Hsieh & Klenow, 2014).

TFP largely accounts for cross-country GDP per capita differences. (e.g. Caselli, 2005: capital + human capital explains <50% cross country income per capita)

Part of these TFP differences have been attributed to:

- Larger dispersion of marginal product of capital and labor across firms in developing economies, *misallocation*.
 - Evidence found in many countries: Hsieh & Klenow (2009), Busso, Madrigal & Pages (2012).
 - For example: reducing dispersion across manufacturing plants in Mexico to level of US implies a TFP gain of approx. 50%.
- Lower growth of productivity at the firm level (Hsieh & Klenow, 2014).

What models (and frictions) can explain these observations?

What frictions can generate misallocation?

• Financial constraints: firms without sufficient collateral are not able to produce with optimal level of capital, then mg. product of capital is not equalized across firms.

What frictions can generate misallocation?

- Financial constraints: firms without sufficient collateral are not able to produce with optimal level of capital, then mg. product of capital is not equalized across firms.
- However: models of financial constraints and firm dynamics generate modest TFP losses through misallocation relative to data (4-5% in Midrigan & Xu, 2013).

Additional channel through which financial constraints affect TFP:

• Financial constraints affect incentives to invest in **knowledge/intangible capital**: if entrepreneur is not able to produce at optimal scale (e.g. optimal level of physical capital) will reduce investments in productivity,

Additional channel through which financial constraints affect TFP:

- Financial constraints affect incentives to invest in knowledge/intangible capital: if entrepreneur is not able to produce at optimal scale (e.g. optimal level of physical capital) will reduce investments in productivity,
- then financial constraints reduce the growth of productivity at the firm level, reducing aggregate TFP.

To analyze this mechanism we can extend previous models w/endogenous firm productivity accumulation:

• firms make investments to improve productivity every period (Pakes & McGuire, 1994; Klette & Kortum, 2004), firm productivity evolves stochastically,

To analyze this mechanism we can extend previous models w/endogenous firm productivity accumulation:

- firms make investments to improve productivity every period (Pakes & McGuire, 1994; Klette & Kortum, 2004), firm productivity evolves stochastically,
- the model can tell us how much of the differences in the productivity growth of firms and aggregate TFP across countries is accounted for by financial constraints.

Productivity Growth of Firms over their Life Cycle

Distribution of Employment by Size of Firm

Quantitative Model: Economics Forces at Work

In the model the following mechanisms come into play:

- financial constraints lower the incentives of entrepreneurs to invest in productivity (entrepreneur will not be able to produce at optimal level and reap benefits of higher productivity),
- lower wages lead to lower ability individuals entering the economy (a standard result since Lucas, 1978).

Quantitative Model: Outline

Main elements of the model:

- occupational choice: entrepreneur or worker,
- financial constraints,
- investment in knowledge capital (stochastic),
- small open economy,
- (extended model with productivity shocks, informal sector in paper).

Builds upon Lucas (1978), Hopenhayn (1992), Pakes & McGuire (1994), Klette & Kortum (2004), Buera, Kaboski & Shin (2011).

Production Technology

Entrepreneur w/ability arphi (fixed) has access to the technology:

$$q = (\varphi n)^{1-\nu} f(k, l)^{\nu}$$

where:

- q is production of final good,
- $f(k, l) = k^{lpha} \, l^{1-lpha}$, $u \in (0, 1)$ decreasing returns-to-scale,
- φ is permanent ability of the entrepreneur, distribution $h(\varphi)$,
- *knowledge capital n*, accumulated through investment in innovation good *x*.

Innovation Technology

• Every period knowledge capital *n* can increase:

$$P(n' = n(1 + \Delta) | n, x) = (1 - \gamma) \frac{(1 - \lambda) a(x/n)}{1 + a(x/n)} + \gamma$$

Innovation Technology

• Every period knowledge capital *n* can increase:

$$P(n' = n(1 + \Delta) | n, x) = (1 - \gamma) \frac{(1 - \lambda) a(x/n)}{1 + a(x/n)} + \gamma$$

• Probability of a decrease (bad shock) in knowledge capital:

$$P(n' = n/(1 + \Delta) \mid n, x) = \frac{(1 - \gamma) \lambda}{1 + a(x/n)}$$

• With remaining probability, remains unchanged.

Workers

 $s = \{ arphi, \mathit{n_w}, b \}$, problem of worker is a savings $b' \geq 0$ decision:

$$v_{w}(s) = \max_{\{b' \ge 0\}} u(c) + \beta (1-\mu) \sum_{\{z'\}} Q(z') v(s')$$

s.t. $c + b' = w + (1+r) b$

Workers

 $s = \{ arphi, \mathit{n_w}, \mathit{b} \}$, problem of worker is a savings $\mathit{b'} \geq 0$ decision:

$$v_w(s) = \max_{\{b' \ge 0\}} u(c) + \beta (1-\mu) \sum_{\{z'\}} Q(z') v(s')$$

s.t. $c + b' = w + (1+r) b$

and occupation decision with random opportunity $z \in \{0, 1\}$:

$$v(s) = \max\{v_e(z \varphi, n_w, b), v_w(s)\}$$

initial level of knowledge capital available to the worker is n_w .

Entrepreneurs

 $s=\{arphi, {\it n}, {\it b}\}$, entrepreneurs choose $b'\geq 0$ and $x\geq 0$ to max:

$$v_e(s) = u(c) + \beta (1 - \mu) \sum_{\{n'\}} P(n' \mid n, x) \max\{v_w(s'), v_e(s')\}$$

subject to budget constraint:

$$c + b' = \pi(s) - x + (1 + r) b$$

Entrepreneurs

 $s = \{ arphi, \textit{n}, \textit{b} \}$, entrepreneurs choose $b' \geq 0$ and $x \geq 0$ to max:

$$v_e(s) = u(c) + \beta (1 - \mu) \sum_{\{n'\}} P(n' \mid n, x) \max\{v_w(s'), v_e(s')\}$$

subject to budget constraint:

$$c + b' = \pi(s) - x + (1 + r) b$$

profits are $\pi(s) = q - (\delta + r) k - w l$ subject to constraint (next slide): $k \leq \overline{k}(s)$.

Financial Enforcement Constraint

In the case of no-default the entrepreneur receives ND:

$$\max_{\{I\}} q - w I - (r + \delta) k - x + (1 + r) b$$

while in the case of default the entrepreneur would receive D:

$$\max_{\substack{\{I\}}} (1-\psi) (q-wI + (1-\delta)k) - x$$

A capital level is **enforceable** if it satisfies $ND \ge D$, implying a bound $\overline{k}(s)$ on capital rental (a reduced form of capturing differences in property rights/creditor protection).

Predetermined Parameters.					
parameter	value	description			
$\beta (1-\mu)$	0.92	effective discount factor			
σ	1.50	risk aversion			
r	0.04	interest rate (small open economy)			
ν	0.85	span-of-control			
α	1/3	income share of capital			
δ	0.08	capital depreciation rate			
а	3.00	innovation technology			
λ	0.70	innovation technology			

parameter	symbol	value
exogenous exit rate	μ	0.05
firm entry probability	θ	0.04
Pareto dist.	θ	4.34
innovation technology	γ	0.24
initial knowledge capital	n _w / <u>n</u>	1.91
size innovation steps	Δ	0.38
target statistics	data	model
target statistics death rate large firms	data 0.05	model 0.05
target statistics death rate large firms total firm entry/exit rate	data 0.05 0.10	model 0.05 0.11
target statistics death rate large firms total firm entry/exit rate std. deviation growth rates	data 0.05 0.10 0.25	model 0.05 0.11 0.25
target statistics death rate large firms total firm entry/exit rate std. deviation growth rates relative size firms [20-25]/[1-5] years	data 0.05 0.10 0.25 2.48	model 0.05 0.11 0.25 2.46
target statistics death rate large firms total firm entry/exit rate std. deviation growth rates relative size firms [20-25]/[1-5] years employment at firms w/50+ workers	data 0.05 0.10 0.25 2.48 0.69	model 0.05 0.11 0.25 2.46 0.60

Calibrated Parameters - US Moments.

Quantitative Exercise

We lower ψ to target the ratio of private credit/output in an emerging economy of 20%.

Productivity Growth of Firms over their Life Cycle

Main Results.					
statistics	US	EE			
weighted firm productivity	1.00	0.80			
TFP	1.00	0.92			
aggregate output	1.00	0.66			
firm productivity [20-25]/[1-5] years	2.61	1.26			

Final Comments

- We have explored a new channel through which financial constraints have an impact on aggregate TFP: they distort the incentives to invest in productivity at the firm level.
- Extended model with informal sector (low productivity and low growth firms w/no access to credit) and forthcoming: quantitative relevance of size dependent distortions vs. financial constraints.
- Buera, Kaboski and Shin (2015): more research is needed in endogenous entrepreneurial productivity!